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MECHANISM OF GROWTH AND SEPARATION OF AXISYMMETRIC DROPS AND BUBBLES 

V. E. lllarionov and B. M. Kochanov UDC 532.135:66.066.1 

A practical solution is obtained for the axisymmetric problem of quasistatic drop 
and bubble growth. 

In practice, processes of mass transfer and heat exchange between drop-forming liquid 
and gaseous disperse media depend on the interaction of the two media. The bubbling of gases 
through liquids is a technique widely used in chemical engineering while air conditioning tech- 
nology is based on producing a liquid spray in a vapor--air mixture [i-iI~. The interaction 
of two media on the developed surface of packings finds application in various branches of 
industry. The interaction of the two media depends not only on the temperature difference, 
the partial pressure difference and the area of the contact surface but also on a number of 
other factors, such as capillary, surface and hydrodynamic effects. If the relative motion 
of the media in direct contact is due to the action of gravitational forces, then the influ- 
ence of the velocity factor on the mass-transfer process is conditioned by the physical prop- 
ties of the media and can be intensified by developing the contact surface. Accordingly, 
the question of the formation of the contact surface and the capillary effects on that sur- 
face are of considerable significance in connection with the solution of engineering problems. 

Let us consider an axisymmetric drop of liquid suspended over a calibrated orifice of 
sufficiently small diameter in a plate of solid material. To this there corresponds a gas 
bubble formed over the orifice in a device made in the form of an individual nozzle, plate, 
or capillary. The diameter of the orifice is so selected that the velocity head of the liq- 
uid or gas is balanced by the resistance to the motion of the drop or bubble (Fig. i). Then 
the total energy of the object at any moment of time t ~ tse p is composed of the surface en- 
ergy and the energy of the force of gravity for drops or the energy of the buoyancy force 
for gas bubbles. Accordingly, the energy functional takes the form 

= dxdy @ ~ f zdxdy, (1) 
D 2 a 2  , J 

where  z = z ( x ,  y, t) i s  t h e  e q u a t i o n  o f  t h e  s u r f a c e  and p = a z / a x ;  q = a z / a y ;  ~ =O~o/n ( p l  - pg )g  
i s  a c e r t a i n  p a r a m e t e r  w i t h  t h e  d i m e n s i o n  o f  t h e  s q u a r e  o f  l e n g t h ,  s i n c e  P l  and Og a r e  t h e  
d e n s i t i e s  o f  t h e  l i q u i d  and t h e  g a s ,  r e s p e c t i v e l y ;  ~ i s  t h e  s u r f a c e  t e n s i o n  a t  t h e  i n t e r f a c e  
o f  t h e  c o r r e s p o n d i n g  p h a s e s ;  ~ i s  t h e  L a g r a n g e  m u l t i p l i e r  t a k i n g  i n t o  a c c o u n t  t h e  i n v a r i a b i l -  
i t y  o f  t h e  volume a t  t ime  t in  s e e k i n g  t h e  e x t r e m a l  of  f u n c t i o n a l  ( 1 ) .  

The a x i s y m m e t r y  makes i t  p o s s i b l e  t o  go o v e r  f rom t h e  t w o - d i m e n s i o n a l  domain to  the  p l a n e  
p r o b l e m  by making  t h e  s u b s t i t u t i o n  r = ]/xz-{ - ~ .  Then (1) t a k e s  t h e  fo rm 

r 

(o = 2 .I + + + (2) 
0 
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Fig. i. "Drop" on plate. Fig. 
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2. Meridional section through "drop": I) first 
stage; 2) second (a) and third (b) stages. 

We write the expression for the variation of the functional (2) 

r d } 
a v  (t) = (r - z'F,.) %Fo + F,.8,Fo + ~ I F , - -  ~ (p,.) 8gx, 

b' t dr 

where F{rxz(r), z~ (r)} is the integrand expression in (2). 

The vanishing of the variation gives the Neumann condition for the contact angles 

(3 )  

~1o- -  cr,~ (4) 
COS Cpo --=- 

(T20 

and the Euler equation for the contour of the drop 

Z x (r) z' (r) �9 = __ ~t:_._~,z + Z. + Z'2) 3/2 ,2  a 2 (I -4- r V  1 + Zr 
(5 )  

Introducing the parameter ~ = arctan z'(r), we write (5) in the form 

d ( s i n r  s i n e  z(r) (6) 
ar - - -7  - = - ' g - + ~ '  

where k~--~/2<~r k=O, 1, 2, 3... 

Since finding the exact solution of Eq. (4) presents considerable mathematical diffi- 
culties, it is necessary to establish the upper and lower bounds of the exact solution. The 
upper bound is given in [12]. To find the lower bound we express (4) in the form 

--if- + R--'~-- = - - a  a S Ra sin cpdcp + ~.a, (7) 

where R and R I are the radii of curvature of the "drop." 

For sufficiently small angles ~=arctan z'(r) and large radii of revolution of the points 
{rxz(r)}, Eq. (7) describes the two-dimensional"drop"[13]. Solving it, in this case we have 

= 2 ~ VL---4--~s~ (s) 
2 V L + e o s , v  , - Z a " + ' f ~ a F t , + c o s , v ,  

where ~= ] / ' L + c o s % ;  ~0 is the value of the contact angle, and the constant of integra- 

tion L is determined from the expression 

Zo = V ~  ::F Vz. + cos ,po. VVa (9) 

From (7) for determining the constant L we obtain 
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where ~ = arccos L. 

z~ (1 + cos q~) - -  4 cos % 
L = 2a2 

4 z~ = - -  cos o), (10) 

2 #  

On the basis of the above, we can divide the process of growth and separation of axisym- 
metric drops and bubbles into three successive stages. 

First Stage. The drop or bubble grows, the contact angle increasing to the equilibrium 
value and the contact radius to its maximum; for a drop the maximum of the contact angle 

qg~ ~x : arccos asv - -  ast , 
r 

and for a gas bubble 

~p~,ax = arccos osz. - -  asy , 
fflv 

w h e r e  ~ s l ,  ~ s v '  and  Olv a r e  t h e  s u r f a c e  t e n s i o n s  a t  t h e  s o l i d - - l i q u i d ,  s o l i d - - g a s ,  and  l i q u i d - -  

g a s  i n t e r f a c e s ,  r e s p e c t i v e l y .  The g r o w t h  o f  t h e  d r o p  o r  b u b b l e  w i t h  i n c r e a s e  i n  c o n t a c t  
r a d i u s  w i l l  c o n t i n u e  u n t i l  t h e  sum o f  ' t h e  s u r f a c e  e n e r g y  and  t h e  f o r c e  o f  g r a v i t y  d i r e c t e d  
a l o n g  t h e  a x i s  o f  symmet ry  i s  e q u a l  t o  z e r o ,  t h e  c u r v a t u r e  o f  t h e  c o n t o u r  a t  t h e  p o i n t s  
(rma x ,  O) i s  a l s o  e q u a l  t o  ~.ero and ~ = % ,  ~ =  O. I n  t h e  f i r s t  s t a g e  t h e  maximum h e i g h t  t o  
which the drop or bubble rises will be 

z~ ~ = V'~aV1  - c o s  ~W- .  (11) 

The maximum vo lume  i s  c a l c u l a t e d  b y  i n t e g r a t i n g  Eq.  (6) f o r  % = ~ x :  

V~ ~x = 2n~Zrma~[ sin ~nax I- (12)  

Second Stage. The growth of the drop or bubble proceeds at the expense of changes in 
its surface. The radius and the contact angle remain unchanged and equal to rmax and ~ax 
The inflection of the contour curve, i.e., the vanishing of the curvature and the reversal 
of its sign, occurs at the points where l~[~, ~,=#0 (Fig. 2a): 

max z~ =V2aVcos % - -  cosco; 

_ ~  co (13)  
rcr = • a [ cos ~ d% 

Vcos '  q~ - -  cos o 

We will call the section of the "drop" with radius rcr the critical section z = Zcr and 
write the equations of the contour 

___ V 2 -  cosq~ 
= - -  a a% [wl ~ I~[; 

2 o V cos q) - cos r 

I: -~]/'a{Vc~176176176176176176 cos ~dd~ _ ~. cos ~d~ , .  

- 2 tg Vcos  ~ -  cos ~0 ~ V c o s , p -  cd-~  J 

(14) 

By integrating Eq. (6) we calculate the total volume of the "drop": 

(p=r 
2 V~ = 2=reraZ sin ~ + Zrer zer + ]/'iaxa/r z l f cos  ~ - -  cos ~ - -  Vi-arcs in  ~1r ~ . (15) 

The critical volmne, i.e., the volume for z~ z cr, we take equal to 

Vc r _~ 2aXrcr aZsinq~. (16) 

S e p a r a t i o n  o f  t h e  " d r o p "  c a n  a l s o  o c c u r  i n  t h e  s e c o n d  s t a g e ,  e v e n  when t h e  e n e r g y  f u n c t i o n a l  
(2) is positive, i.e., when the forces of cohesion hold the "drop" at the surface of the 
solid. In this case for the critical section we require satisfaction of the necessary con- 
dition of onset of separation of the "drop" 
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where n is a number showing by how many times the force of gravity exceeds the force of sur- 
face tension. Condition (17), together with expression (16), makes it possible to determine 
the precise onset of separation, i.e., the start of the third stage, when Isin ~I = I and 
I~I = 90 ~ , which is confirmed by the experimental data [14]. 

Third Stage. The growth of the media contact surface proceeds not only as a result of 
increase in the mass of the object, but also as a result of its separation, the separation 
rate being limited only by the viscosity of the liquid. If the total energy functional (2) 
is nonnegative, the radius and contact angle will remain the same as in the second stage 
(Fig. 2b). In order to describe the contour by means of Eqs. (8) we find the constant of 
integration L from relation (10). We note that in the third stage its sign is reversed; at 
the point w=arctg(+_oo) the angle ~ has a jump equal to n radians. The points l~[=e and 
I~I =n--0) are called the points of inflection; accordingly, the contour equationS take the 
form 

if -t- l / ~  ~ '  cos qo 
= a V dr,  o ~< I,~1 ~< ~/2,  

2 0 cos ~ + cos o 

1 = ]/'2-a {V cos % + cos o~ - .  1/cos q~ + cos o}, % ~< I~1 ~< = - -  to, 

-4- W2- ~ o cos qodq~ I~1 cos tpdtp ~ (18) 
= - - - r - a / ~  = ~ - ~ -  + t - 7 - - - - - - - ' } ,  %~<lrl~<z-o. 

z t ~ V cos ~ + cos o~ ~ V cos ~ ~- cos m J 

By a n a l o g y  w i t h  (16 ) ,  by i n t e g r a t i n g  Eq. (6) we can  c a l c u l a t e  t h e  volume up t o  t h e  s e p a r a -  
t i o n  s e c t i o n  (A--A) ( F i g .  2b) :  

~ep = l/ .V~a V cos % + cos to (r~ - -  r~) + 2 z a  z (r e - -  rA) + nr~ (zn - -  ZA), ( 1 9 )  

where q-r B, zB; :i:r A, z A are the contour points of sections B--B and A--A, which can be calculated 
from Eqs. (18). Complete separation occurs when for the separation section the following 
condition is satisfied: 

n p g V  sep = E,  
. r~  (20) 

where E i s  the iso thermal  modulus of e l a s t i c i t y  of  medium I I  (see F ig .  1). 

Since the modulus of elasticity of most liquids lies in the range i0~-i0 z~ N/m 2, while 
for gases it is equal to the pressure inside the bubble [15], we may conclude that the bubble 
separation time will be largely determined by the rate of flow of liquid over the interphase 
boundary and will depend very little on the properties of the gas. For a suspended drop, on 
the other hand, the separation time will depend on the flow of liquid inside the drop and be 
practically independent of the properties of the surrounding gas. Thus, knowing the modulus 
of elasticity of a given liquid, from relations (20), (19), (18), (14) and (i0) we can obtain 
an estimate of the separation time, more accurate for a drop and less so for a bubble. 
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KINETIC THEORY OF DIFFUSION IN LIQUID AND GAS MIXTURES 

�9 A. Sh. Bikbulatov UDC 532.72:533.15:518.5 

Expressions for evaluating diffusion coefficients in real multicomponent solutions 
are obtained on the basis of the kinetic theory of dense gases and liquids. 

For multicomponent mixtures, molecular mass transport is determined from [I] j=--D-grad 
y, where D is the diffusion coefficient matrix of multicomponent systems. 

Since most mass-exchange processes of separation, mixing, and chemical transformation 
occur, as a rule, in multicomponent systems, to calculate these processes information is 
needed on the diffusion coefficient matrix, providing the total pattern of mass transport. 
There are quantitative and qualitative distinctions between multicomponent and binary diffu- 
sion [2, 3]. However, due to the absence of information on D the available methods of eval- 
uating processes in multicomponent systems operate only with a single coefficient of binary 
diffusion. This situation restricts the development of mass transfer theory in multicompo- 
nent systems and the creation of justified methods of a computational structure. 

It must also be noted that experimental data on diffusion coefficients in a wide inter- 
val of concentrations and temperatures, necessary for the calculations, are absent even for 
binary mixtures. Theoretical methods of calculating transport coefficients in liquid mix- 
tures are far from complete. Thus, the more recently developed kinetic theory of multicom- 
ponent dense gases and liquids for rigid sphere models [4] with the use of a radial distribu- 
tion function [3] generally renders the basic transport characteristics in ideal mixtures. 
For this reason, this theory does not fully include the complexity of molecular interactions, 
and the agreement between calculated and experimental values of diffusion coefficients in 
nonidea! systems is very poor. Therefore, further development of the kinetic theory must 
occur in the direction of a refined intermolecular interaction in real solutions. 

One of the methods of taking into account the real molecular interaction in liquid mix- 
tures, more precisely the presence of many-particle interactions and real shapes of inter- 
molecular forces, as well as capabilities of formation of associated complexes, is their ac- 
count in describing collision terms of the kinetic equations, which is still an unresolved 
problem. Another method, recently developed, consists of using in the solution of the kinetic 
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